An application of genetic programming for power system planning and operation

نویسندگان

  • R. Behera
  • B. B. Pati
  • B. P. Panigrahi
  • S. Misra
چکیده

This work incorporates the identification of model in functional form using curve fitting and genetic programming technique which can forecast present and future load requirement. Approximating an unknown function with sample data is an important practical problem. In order to forecast an unknown function using a finite set of sample data, a function is constructed to fit sample data points. This process is called curve fitting. There are several methods of curve fitting. Interpolation is a special case of curve fitting where an exact fit of the existing data points is expected. Once a model is generated, acceptability of the model must be tested. There are several measures to test the goodness of a model. Sum of absolute difference, mean absolute error, mean absolute percentage error, sum of squares due to error (SSE), mean squared error and root mean squared errors can be used to evaluate models. Minimizing the squares of vertical distance of the points in a curve (SSE) is one of the most widely used method .Two of the methods has been presented namely Curve fitting technique & Genetic Programming and they have been compared based on (SSE)sum of squares due to error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating the Composite Power System Planning by Benders Decomposition

This paper presents an application of Benders decomposition to deal with the complexities in the simultaneous Generation Expansion Planning (GEP) and Transmission Expansion Planning (TEP). Unlike the power system operation fields of study, the power system planning methods are not expected to be fast. However, it is always preferable to speed up computations to provide more analysis options for...

متن کامل

Network Planning Using Iterative Improvement Methods and Heuristic Techniques

The problem of minimum-cost expansion of power transmission network is formulated as a genetic algorithm with the cost of new lines and security constraints and Kirchhoff’s Law at each bus bar included. A genetic algorithm (GA) is a search or optimization algorithm based on the mechanics of natural selection and genetics. An applied example is presented. The results from a set of tests carried ...

متن کامل

Application of Stochastic Programming to Determine Operating Reserves with Considering Wind and Load Uncertainties

Wind power generation is variable and uncertain. In the power systems with high penetration of wind power, determination of equivalent operating reserve is the main concern of systems operator. In this paper, a model is proposed to determine operating reserves in simultaneous market clearing of energy and reserve by stochastic programming based on scenarios generated via Monte Carlo simulation ...

متن کامل

Clean and Polluting DG Types Planning in Stochastic Price Conditions and DG Unit Uncertainties

This study presents a dynamic way in a DG planning problem instead of the last static or pseudo-dynamic planning point of views. A new way in modeling the DG units’ output power and the load uncertainties based on the probability rules is proposed in this paper. A sensitivity analysis on the stochastic nature of the electricity price and global fuel price is carried out through a proposed model...

متن کامل

Optimization of cascade hydropower system operation by genetic algorithm to maximize clean energy output

Background: Several reservoir systems have been constructed for hydropower generation around the world. Hydropower offers an economical source of electricity with reduce carbon emissions. Therefore, it is such a clean and renewable source of energy. Reservoirs that generate hydropower are typically operated with the goal of maximizing energy revenue. Yet, reservoir systems are inefficiently ope...

متن کامل

A Novel Method for Designing and Optimization of Networks

In this paper, system planning network is formulated with mixed-integer programming. Two meta-heuristic procedures are considered for this problem. The cost function of this problem consists of the capital investment cost in discrete form, the cost of transmission losses and the power generation costs. The DC load flow equations for the network are embedded in the constraints of the mathematica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012